356 research outputs found

    Distorted Black Holes with Charge

    Full text link
    We present new solutions to the Einstein-Maxwell equations representing a class of charged distorted black holes. These solutions are static-axisymmetric and are generalizations of the distorted black hole solutions studied by Geroch and Hartle. Physically, they represent a charged black hole distorted by external matter fields. We discuss the zeroth and first law for these black holes. The first law is proved in two different forms, one motivated by the isolated horizon framework and the other using normalizations at infinity.Comment: 18 pages, LaTe

    Matrix Ernst Potentials and Orthogonal Symmetry for Heterotic String in Three Dimensions

    Full text link
    A new matrix representation for low-energy limit of heterotic string theory reduced to three dimensions is considered. The pair of matrix Ernst Potentials uniquely connected with the coset matrix is derived. The action of the symmetry group on the Ernst potentials is established.Comment: 10 pages in LaTe

    Extremal Problems for Roman Domination

    Get PDF
    A Roman dominating function of a graph G is a labeling f: V(G) →{0,1,2} such that every vertex with a label 0 has a neighbor with label 2. The Roman domination number γR(G) of G is the minimum of ∑ʋϵV(G)f(v) over such functions. Let G be a connected n-vertex graph. We prove that γR(G) ≤ 4n/5, and we characterize the graphs achieving equality. We obtain sharp upper and lower bounds for γR(G) + γR(Ḡ) and γR(G)γR(Ḡ), improving known results for domination number. We prove that γR(G) ≤ 8n/11 when ᵟ(G) ≥ 2 and n ≥ 9, and this is sharp

    Symplectic Gravity Models in Four, Three and Two Dimensions

    Full text link
    A class of the D=4D=4 gravity models describing a coupled system of nn Abelian vector fields and the symmetric n×nn \times n matrix generalizations of the dilaton and Kalb-Ramond fields is considered. It is shown that the Pecci-Quinn axion matrix can be entered and the resulting equations of motion possess the Sp(2n,R)Sp(2n, R) symmetry in four dimensions. The stationary case is studied. It is established that the theory allows a σ\sigma-model representation with a target space which is invariant under the Sp[2(n+1),R]Sp[2(n+1), R] group of isometry transformations. The chiral matrix of the coset Sp[2(n+1),R]/U(n+1)Sp[2(n+1), R]/U(n+1) is constructed. A K\"ahler formalism based on the use of the Ernst (n+1)×(n+1)(n+1) \times (n+1) complex symmetric matrix is developed. The stationary axisymmetric case is considered. The Belinsky-Zakharov chiral matrix depending on the original field variables is obtained. The Kramer-Neugebauer transformation, which algebraically maps the original variables into the target space ones, is presented.Comment: 21 pages, RevTex, no figurie

    Static axisymmetric spacetimes with non-generic world-line SUSY

    Full text link
    The conditions for the existence of Killing-Yano tensors, which are closely related to the appearance of non-generic world-line SUSY, are presented for static axisymmetric spacetimes. Imposing the vacuum Einstein equation, the set of solutions admitting Killing-Yano tensors is considered. In particular, it is shown that static, axisymmetric and asymptotically flat vacuum solutions admitting Killing-Yano tensors are only the Schwarzschild solution.Comment: 10 pages (RevTeX), TIT/HEP-253/COSMO-4

    Higher Spin Field Equation in a Virtual Black Hole Metric

    Get PDF
    In a quantum theory of gravity, fluctuations about the vacuum may be considered as Planck scale virtual black holes appearing and annihilating in pairs. Incident fields scattering from such fluctuations would lose quantum coherence. In a recent paper (hep-th/9705147), Hawking and Ross obtained an estimate for the magnitude of this loss in the case of a scalar field. Their calculation exploited the separability of the conformally invariant scalar wave equation in the electrovac C metric background, which is justified as a sufficiently good description of a virtual black hole pair in the limit considered. In anticipation of extending this result, the Teukolsky equations for incident fields of higher spin are separated on the vacuum C metric background and solved in the same limit. With the exception of spin 2 fields, these equations are shown in addition to be valid on the electrovac C metric background. The angular solutions are found to reduce to the spin- weighted spherical harmonics, and the radial solutions are found to approach hypergeometrics close to the horizons. By defining appropriate scattering boundary conditions, these solutions are then used to estimate the transmission and reflection coefficients for an incident field of spin s. The transmission coefficient is required in order to estimate the loss of quantum coherence of an incident field through scattering off virtual black holes.Comment: 23 pages, 3 figures, LaTeX, minor typo correcte
    corecore